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Abstract. Large sample datasets are transforming hypothesis testing and model fidelity in the catchment sciences, but few 

large stream water chemistry datasets exist with complementary streamflow, meteorology, and catchment physiographic 

attributes. Here, we pair atmospheric deposition and water chemistry related information with the existing CAMELS 15 

(Catchment Attributes and Meteorology for Large-sample Studies) dataset.  The newly developed dataset, CAMELS-Chem, 

comprises U.S. Geological Survey water chemistry data and instantaneous discharge over the period from 1980 through 2014 

in 506 minimally impacted headwater catchments. The CAMELS-Chem dataset includes 18 common stream water chemistry 

constituents: Al, Ca, Cl, Dissolved Organic Carbon, Total Organic Carbon, HCO3, K, Mg, Na, Total Dissolved Nitrogen 

[nitrate + nitrite + ammonia + organic-N], Total Organic Nitrogen, NO3, Dissolved Oxygen, pH (field and lab), Si, SO₄, and 20 

water temperature. We also provide an annual wet deposition loads from the National Atmospheric Deposition Program over 

the same catchments that includes: Ca, Cl, H, K, Mg, and Total Nitrogen from deposition [precipitation NO3 + NH4, dry 

deposition of particulate NH4, + NO3, and gaseous NH3], Na, NH4, NO3, SO₄. We release a paired instantaneous discharge 

(and mean daily discharge) measurement for all chemistry samples. To motivate wider use by the larger scientific community, 

we develop three example analyses: 1. Atmospheric-aquatic linkages using atmospheric and stream SO4 trends, 2. Hydrologic-25 

biogeochemical linkages using concentration-discharge relations, and 3. Geological-biogeochemical linkages using 

weathering relations. The retrieval scripts and final dataset of   > 412,801 individual stream water chemistry measurements are 

available to the wider scientific community for continued investigation. 

1 Introduction 

While hydrochemical datasets are increasingly available at continental scales, these datasets have often provided scientific 30 

insights focused on detailed knowledge of a single catchment rather than transformative knowledge across many catchments. 
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To address the need for ‘balancing breadth with depth’ (Gupta et al., 2014, Hubbard et al., 2020), the hydrological sciences 

have developed large sample size datasets that are of high quality and then made these available to the research community. 

One of the key advantages of aggregating and harmonizing data into larger sample size datasets is to test how model hypotheses 

reproduce observed behavior across variable conditions and sites to reduce the uniqueness of place-based issues that plague 35 

catchment science (Gupta et al., 2014) (Hubbard et al., 2020). As a result, several recent efforts have focused on generating 

and using datasets across the continental U.S. (CONUS) where observation networks are relatively dense. For example, the 

Model Parameter Estimation Experiment (MOPEX, Duan et al., 2006) dataset has been used to detect the effects of shifts from 

snow to rain on streamflow (Berghuijs et al. 2014) and to better diagnose the cause of catchment-scale water budgets (Brooks 

et al., 2015). Recent efforts have extended the record and detail of auxiliary data of older efforts (e.g. MOPEX) to develop 40 

longer-term streamflow and hydrometeorological forcing data for a larger number of minimally disturbed catchments, 

including the continental U.S (Newman et al.), Chile (Alvarez-Garreton et al., 2018), and Brazil (Chagas et al., 2020).  In 

particular, Catchment Attributes for Large-Sample Studies (CAMELS, Newman et al., 2014) compile high quality streamflow 

measurement in 671 unimpaired catchments, as well as climate forcing datasets (e.g. daily precipitation and temperature) and 

physiographic properties (e.g. land cover, topography, etc., Addor et al., 2017).  CAMELS has seen widespread adoption by 45 

the hydrological community as a benchmarking tool for hydrological models (Melsen et al., 2018; Mizukami et al., 2019; Pool 

et al., 2019), in the development of hydrological signatures and new information theory-based approaches, and the application 

of novel machine learning tools (Kratzert et al., 2018).  However, the generation of matching datasets on stream water 

chemistry has not seen as much development. 

 50 

Indeed, some of the most important insights across Earth science disciplines over the last several decades derived from 

investigations that combined several datasets such as long-term stream chemistry data, stream discharge, hydroclimatology, 

and catchment properties (e.g. vegetation, geology, topography).  For example, global analyses of CO2 evasion from headwater 

streams have helped to quantify global fluxes (Gaillardet et al., 2018; Horgby et al., 2019; Lauerwald et al., 2015; Raymond 

et al., 2013). Changes in dissolved organic carbon (DOC) in stream water were partially related to changes in atmospheric 55 

deposition and acidity only viewable with longer records (Monteith et al., 2007). Stream flow and chemistry data, in particular 

combined(?) concentration and discharge data, have also been shown to  illuminate subsurface flow paths and chemical vertical 

stratification (Stewart et al., 2022; Zhi and Li, 2020). Applying an integrative dataset in the Northeastern U.S., a recent study 

showed differential sensitivity of headwater catchments to reductions in SO4 and NO3 and resulting variations in stream DOC 

efflux (CITE Adler et al. 2021). Importantly, this study confirmed that much of the long-term recovery from acid rain is 60 

mediated by catchment-scale processes in variable soils and bedrock as well as variable hydrological and climatic forcings. 

Only by aggregating data across many catchments could these interacting factors affecting stream chemistry be deterimined 

because transferability from a  small number of regional catchments is very limited (Clow et al, 1999; Garmo et al., 2014; 

Harpold et al., 2010). Long-term water chemistry datasets have also given insight into rock weathering and solute flux 

estimates.  For example, Godsey et al. (2009) showed the ubiquity of ‘chemostasis’, where solute fluxes are primarily driven 65 
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by stream discharge and not variations in concentrations in 59 catchments but did not investigate the role of catchment 

properties or climate.  More recent work using 2,186 catchments from the Global River Chemistry Dataset (GLORICH) began 

to illustrate the role of aridity and catchment properties in controlling the concentration-discharge (C-Q) relationship in key 

solutes (Godsey et al., 2019).   

 70 

An opportunity exists to inform our understanding of the inter-relationships between water chemistry, hydrology, and 

biogeochemistry by developing new datasets that link stream chemistry to discharge and other catchment properties.  A notable 

example is the GLORICH dataset that focuses on large, human impacted riverine systems and contains corresponding 

catchment properties and streamflow data from over 17,000 sampling locations (Hartman et al., 2019). However, GLORICH 

does not include complete observation of streamflow (and instead supplements with modeled data); its climate forcing datasets 75 

and catchment properties are scant, significantly limiting its application to process-based modeling and data analysis.  As a 

result, we lack understanding on how stream chemistry responds to climatic forcings and catchment structure characteristics 

at the continental to global scales (Godsey et al., 2019). The continued development of large sample datasets that include 

stream chemistry has the potential to transform catchment science and address grand scientific challenges. 

 80 

To enable and advance these (bio)geo-chemistry and catchment sciences, we compiled a new dataset that takes advantage of 

one of the most comprehensive collections of catchment attributes across the US i.e., CAMELS (Addor et al., 2017; Newman 

et al., 2014), and amended it with paired quality-controlled water chemistry data, instantaneous discharge, and atmospheric 

deposition data, hereafter referred to CAMELS-Chem.  We harvested >412,801 individual water chemistry measurements 

from the U.S. Geological Survey (USGS) National Water Information System (NWIS), covering 506 catchments and 16 85 

constituents, over the period from 1980 to 2014 as well as annual catchment-scale atmospheric deposition from a product 

developed by the National Atmospheric Deposition Program (NADP) for the same time period.  The publicly released dataset 

also includes scripts that increase reproducibility and the potential to update the record with more current data. We first 

introduce the methods used to develop the CAMELS-Chem dataset (Section 2) and then summarize the availability and spatial 

patterns of key water chemistry constituents (Section 3). Finally, we develop example analyses using the large hydrochemistry 90 

dataset to demonstrate its utility for applications in (bio)geo-chemistry, ecology, and hydrology (Section 4). 

2 Materials and Methods 

2.1 Data Sources 

Two different data sources were identified for acquisition 1) NWIS instantaneous and daily mean discharge data and 2) NWIS 

water quality data for the (bio)geo-chemical records. NWIS time series data significantly reduce the need to resolve semantic 95 

and structural conflicts due to the data having already been normalized and quality controlled. NWIS data also have unique 

gauge identifiers for each observation reducing the complexity of merging the two datasets. The geographical coverage for the 
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dataset encompasses the gauge IDs of the original 671 CAMELS watersheds and uses the same temporal period of the 

CAMELS dataset from water years 1980 to 2014. The resulting data capture rendered a water quality record comprising 493 

watersheds wherein 178 gauges did not have any associated water quality data. All 671 CAMELS gauges returned values for 100 

both instantaneous and daily mean discharge. 

2.2 Applied Methods 

The temporal and geographical span of this dataset posed two distinct data management needs: 1) the integration of a large 

amount of data from disparate data repository systems such that different gauges could be compared, and 2) an integrated data 

repository to group and browse large amounts of data.  105 

 

Data integration required the development of processes for the acquisition and integration of the NWIS data; its transformation 

into appropriate subsets and subsequent storage of the transformed data was solved using a data integration process called 

Extract, Transform, and Load (ETL). ETL generally involves extracting data from outside sources (Figure 1), transforming 

the data to fit operational needs (which can include quality definitions) and loading the data into an end target (e.g., a database 110 

or data warehouse). ETL is an especially useful method in the creation and management of efficient and consistent databases 

and data warehouses. Moreover, ETL tools allow for the fast, straightforward, and reproducible loading of new (and reloading 

of old) datasets, which facilitates continuous data updates, and auditing of the data acquisition processes. For this project, 

Pentaho Data Integration (PDI) ETL (Pentaho Data Integration 2020) was used. 

 115 

The second need, an integrated data repository, was solved by using an online transactional processing (OLTP) relational 

database management system (RDBMS). For the data repository, we selected Oracle’s free and open-source database, 

PostgreSQL (PostgreSQL 2020). OLTP databases are optimized to prevent data anomalies by only storing data in one place 

and using keys to relate different tables and data to each other. A relational database provides fast query processing, enforces 

data integrity, provides detailed information about current data and schema, and a flexible platform to export data for external 120 

analysis. Statistics were calculated for key parameters such as probability of exceedance, standard deviation, low/medium/high 

flow conditions, mean daily and annual flow. These were used in the following figures and are also available as part of this 

data release.   

2.3 Related Discharge Dataset 

In addition to a daily average discharge, we solve several challenges to release an instantaneous discharge dataset.  125 

Approximately 93% of the samples in CAMELS-Chem have a paired daily discharge value; however, the coverage for paired 

instantaneous discharge values is lower at 15% because not all gauges provide hourly observations or they provide discharge 

only from a more recent part of the record.  The biogeochemical sample time was adjusted forward/backward to pair with the 

closest quarter -hour (or sometimes hourly) instantaneous discharge observation. Missing time stamps for (bio)geo-chemical 
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sampling is more challenging to correct.  We address this by using the fact that field technicians generally visit and sample 130 

once per day so the recorded time from one sample is as representative for all samples taken on that day. By assuming one 

sampling time every day per site we obtained another 397 instantaneous discharge (out of a total of 8,975 records without 

timestamps).     

2.4 Wet Deposition Dataset 

Wet deposition data were obtained from NADP for the period from 1985 until 2019. The data product is generally an inverse 135 

distance weighted interpolation of the wet deposition observations; more details are provided on their website. Data rasters 

were aligned with CAMELS catchment shape files to determine total watershed deposition for 9 species for a given year.  

Quantum GIS 3.12 was used to calculate total (mean) deposition for a given year by catchment. Minimum, maximum, and 

mean values were calculated for each catchment (Table 2). 

Table 1: The stream water chemistry datasets in the CAMELS-Chem dataset including the name, units, and description that includes 140 
the abbreviation used in this paper. 

Attribute Name Description Units 

Al Aluminum Water, filtered mg/l 

Ca Calcium Water, filtered mg/l 

Cl Chloride Water, filtered mg/l 

DOC Dissolved Organic Carbon Water, filtered mg/l 

TOC Total Organic Carbon Water, unfiltered mg/l 

HCO3 Bicarbonate Water, filtered, field, inflection-point 

(incremental titration method) 

mg/l 

K Potassium Water, filtered mg/l 

Mg Magnesium Suspended sediment, total mg/l 

TDN Total Dissolved Nitrogen Water, filtered 

[nitrate + nitrite + ammonia + organic-N] 

mg/l 

TON Organic Nitrogen Water, unfiltered mg/l 

Na Sodium Water, filtered mg/l 

NO3 Nitrate Water, filtered mg/l 

DO Dissolved Oxygen Water, unfiltered mg/l 

pH pH Water, unfiltered, field std units 

pH_l pH Water, unfiltered, laboratory std units 

Si Silica Water, filtered mg/l 
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SO4 Sulfate Water, filtered mg/l 

 

Table 2: NADP depositional dataset, denoting concentration for each constituent, including the name, units, and description that 

includes the abbreviation used in this paper. *TN_d denotes Total Nitrogen depositional observation [precipitation NO3 + NH4, dry 

deposition of particulate NH4, + NO3, and gaseous NH3]. 145 

Attribute Name Units 

Ca Calcium mg/l 

Cl Chloride mg/l 

H Hydrogen mg/l 

K Potassium mg/l 

Mg Magnesium mg/l 

*TN_d Total Nitrogen mg/l 

Na Sodium mg/l 

NH4 Ammonium mg/l 

NO3 Nitrate mg/l 

SO4 Sulfate mg/l 

 

 

3 Dataset Description 

The CAMELS-Chem dataset comprises 17 water chemistry and property values (Table 1), instantaneous discharge, and annual 

wet deposition loads (Table 2).  A comparison of the stream water and wet deposition constituents are provided in Table 3.  150 

The focus of CAMELS-Chem is stream water chemistry, which we organize into cations (Al, Ca, K, Mg, Na, Si), anions and 

nutrients (Cl, DOC, HCO3, NO3, SO₄, TDN, TOC) and general water quality parameters (pH, DO, and water temperature). 

The additional wet deposition dataset can also be organized into cations (Ca, H, K, Mg, Na, NH4,), anions (Cl, NO3, SO4), 

and TN.  In the next two sections we describe and exemplify the scope and overall spatial patterns of the stream chemistry 

(Section 3.1) and wet deposition data (Section 3.2) for a subset of 8 constituents (Table 2: Ca, DO, DOC, Na, NO3, pH, Si, 155 

SO4) and discharge. Information for other constituents is provided in the supplementary materials.   

 

Table 3: NADP depositional dataset, denoting concentration for each constituent, including the name, units, and description that 

includes the abbreviation used in this paper. *TN_d denotes Total Nitrogen depositional observation [precipitation NO3 + NH4, dry 

deposition of particulate NH4, + NO3, and gaseous NH3]. 160 

Source Group Water Chemistry or Property 
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USGS NWIS Surface water 

chemistry 

 

Cations 

Anion and nutrients 

General water quality 
 

 

Al, Ca, Mg, Na, K, Si 

Cl, DOC, HCO3, NO3, SO₄, TDN, TOC 

pH, DO, temperature 
 

NADP wet deposition 

 

Cations 

Anions and nutrients 
 

 

Ca, K, Mg, Na, H (pH) 

Cl, TN_d, NO3, SO4 
 

 

 

3.1 Water Chemistry Constituents and Data Availability 

While the lengths of discharge and climate records extend up to or greater than 30 years for many CAMELS-Chem catchments, 

the water chemistry data are not as continuous and spatially consistent (Figure 2 and S1).  The total number of stream water 165 

samples varies substantially depending on the variable of interest, which should be taken into consideration when using this 

dataset. For example, the dataset has 34,704 total Si measurements from 477 catchments, compared to only 11,101 DOC 

measurements from 189 catchments (Figure 2).  In general, weathering-related solutes (Si, Ca, K, Mg, Na) are more 

comprehensively sampled (i.e. longer records and more catchments) than biologically driven constituents (NO3, TDN, DOC). 

Temperature and DO are sampled more often because they are part of the standard USGS field measurements at the time of 170 

water chemistry sampling.  Because USGS sampling foci varied over each decade, temporal biases in the sampling record 

exist.  For example, many of the stream water constituents impacted by acid rain (e.g. SO₄, Ca) were sampled less frequently 

starting in the late 1990’s.  In contrast, sampling frequency for many solutes related to local water quality issues (i.e. NO3, 

and K) have increased in recent decades (Figure 2).  The NO3 data are more focused in the Midwest and east coast where 

agriculture is generally more intense.  In contrast, DOC observations highlight the location of long-term sites focused on 175 

minimally human-impacted catchments (e.g., UGSG Hydrologic Benchmark Network) that have the most comprehensive 

sampling of all solutes (Gupta et al., 2014; Mast, 2013).  We explore how the consistency of spatial and temporal sampling 

can affect analysis techniques and inferences in Section 4.   

 

 180 
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3.2 Atmospheric Deposition Dataset 185 

Annual average atmospheric deposition maps developed by the National Atmospheric Deposition Program (NADP) are 

reported for each catchment (Figure 4).  The wet deposition data are important to explain some water chemistry patterns.  For 

example, Cl deposition near the coasts (Figure 3) is evident in higher streamflow Cl concentrations along the coast relative to 

more inland catchment (Figure 3).  Conversely, atmospheric deposition of NO3 is much higher in the Midwest and other places 

where anthropogenic inputs of fertilizer are high (Figure 4) and are consistent with patterns in stream chemistry (Figure 2).  190 

The annual resolution of the wet deposition data is sufficient to investigate trends in air and water quality (see example 4.3) 

and could be supplemented as additional datasets become available (i.e., total wet and dry deposition; Schwede et al., 2014). 

4 Example Analyses Using CAMELS-Chem 

We illustrate the research potential of CAMELS-Chem using three themes and examples: 1. by investigating trends in SO4 

deposition and stream chemistry over the continental U.S we show highlight atmospheric-aquatic linkages, 2. by investigating 195 

continental-scale C-Q relations we highlight hydrological and biogeochemical linkages, and 3. by investigating weathering 

patterns we highlight geological-biogeochemical linkages.  Our goal for this section is to demonstrate the unique value of the 

CAMEL-Chem dataset, its potential limitations, and to motivate future work.   

4.1 Trends in Atmospheric SO4 Deposition and Stream Chemistry 

4.1.1 Background and Motivation 200 

The Industrial Revolution caused a rapid increase in fossil fuel emissions, which introduced acid anions (SO₄, NO3) in excess 

of background conditions leading to acidic precipitation throughout many industrialized regions (Newell & Skjelkvåle, 1997). 

The Clean Air Act in 1970 and subsequent amendment in 1990 led to major reduction in air pollution as apparent in 

progressively decreasing deposition amounts (Accessed September 20, 2020: https://www.epa.gov/air-trends/sulfur-dioxide-

trends). These significant changes in atmospheric composition served as an experiment in stream chemistry response (Stoddard 205 

et al, 1990) and motivated several studies across the US and Europe. For example, Stoddard et al. (1990) showed that stream 

water acid anion concentration declined more in the 1990s than the 1980s and later research indicated that effects were larger 

in Europe than North America (Garmo et al., 2014).  In the Northeastern U.S., SO4 stream chemistry has generally responded 

to declines in SO4 deposition (McHale et al., 2017; Siemion et al., 2018). However, catchment properties and flow regime 

were shown to impact the sensitivity of stream response to shifts in deposition (Clow et al., 2018; Murdoch et al., 2006).  The 210 

lack of co-located long-term deposition data, stream water chemistry and discharge data, and catchment attributes hinders 

investigation of the legacy of effects of acid rain on stream chemistry at continental scales. 

https://doi.org/10.5194/hess-2022-81
Preprint. Discussion started: 8 March 2022
c© Author(s) 2022. CC BY 4.0 License.



9 

 

4.1.2 Analysis and Findings 

CAMELS-Chem provides new potential to analyze the effects of acid deposition on long-term stream chemistry trends across 

a range of hydrological conditions.  Many (but not all) sites have >100 SO4 stream samples spanning over 20 years of record 215 

(Figure 2).   Our analyses of the flow duration curves (FDC, divided into terciles of probability of exceedance < 0.33) show 

that bias towards part of the flow regime when SO4 samples is common and depends on the location of interest (Figure 5).  

For example, some streams in central Arizona and North Dakota have no low flow samples (FDC>66%), whereas streams in 

Oregon and Washington tend to have more moderate flows (33%>FDC<66%) than high flows (FDC<33%; Figure 5).   

 220 

We performed a Mann-Kendall test to investigate trends in atmospheric SO4 deposition and resulting trends in stream water 

chemistry (Hirsch et al., 1984).  Our results are in agreement with previous findings of declining SO4 deposition following the 

1990 Clear Air Amendments (Figure 5, Stoddard et al., 2003). As expected, plotting trends in SO4 stream chemistry and wet 

deposition just after the Clean Air Act (Figure 5a) show a predominance of decreasing trends in SO4 deposition and 

corresponding decreasing trends in SO4 stream chemistry.  Wet deposition trends remain decreasing in the following two 225 

decades (1995-2005 and 2005-2015), but with much response in SO4 stream chemistry.  This initial analysis provides a starting 

point for hypothesis testing - for example, on the role of catchment attributes that are shown for the dominant geology in Figure 

5a-c.  Furthermore, we hope to motivate more sophisticated statistical and machine learning techniques to investigate coupled 

trends in solutes and the role of climate physiographic information as predictor variables. 

4.2 Concentration-Discharge Relationships 230 

4.2.1 Background and Motivation 

Concentration-discharge (C-Q) relationships are routinely used to compute solute loads for mass budgets (Cohn et al., 1989) 

and have been used to infer catchment effects on biogeochemical cycling (Basu et al., 2010, Musolff et al., 2015).  When 

event-scale data is not available, routine sampling can be used to compute a log-log C-Q relationship to understand whether 

concentration has a clear dependency on discharge.  The log-log C-Q relationship is considered chemostatic if the regression 235 

slope is near zero, implying that export of that solute is negligibly influenced by discharge (Godsey et al., 2009, Underwood 

et al., 2017, Zhi and Li, 2020).   

 

This chemostatic relation is more likely for geogenic solutes, like Si and Ca, and less so for biogenic solutes, like nutrients, 

with large anthropogenic or natural legacy effects (Musolff et al., 2015).  Recent work by Godsey et al., (2019) suggests that 240 

groundwater and fast chemical reactions buffer C-Q relationships towards chemostasis, but that the baseline concentrations 

reflect catchment differences in geology, land use, etc.  Godsey et al. (2019) also found that nutrients can be chemostatic, but 

their long-term mean concentrations correlated more to land use than climate.  Moreover, sampling bias occurring at high and 

low streamflow (Figure 5, as well as rising and falling limb of hydrograph, season, etc.) may bias effects towards chemostatic 
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behavior (Zhi et al., 2019).  These efforts with CAMELS-Chem show the value of large-sample datasets for inferring C-Q 245 

relations and their uncertainty. 

4.2.2 Analysis and Findings 

The CAMELS-Chem dataset offers potential to resolve C-Q relationships by improving discharge estimates and pairing with 

substantial existing physiographic information.  Here we repeat the methods and analysis of Godsey et al. (2019) to show 

similar event-scale (i.e. instananeous water chemistry and discharge) C-Q slopes across the overlapping solutes (Figure 6).  250 

The existing physiographic data compiled by (Addor et al., 2017) allows us to easily filter by the aridity index to match the 

previous analysis of Godsey et al. 2019. Arid catchments were defined as those in which potential evapotranspiration was 

greater than actual evapotranspiration, the reverse was used to determine humid catchments.  In general, the findings for 

CONUS sites are consistent with the global-scale analysis of Godsey et al. (2019), showing near-chemostatic behavior of DOC 

and Si.  In contrast to Godsey et al. (2019), Na for the CAMELS sites shows more pronounced negative slopes in arid 255 

catchments than in humid catchments. This analysis could be expanded to include additional solutes, or physiographic data, in 

more complex statistical or machine learning based approaches that attempt to infer association with biogeochemical process 

and uncertainty due to irregular and limited sampling.   

 

The CAMELS-Chem dataset has several advantages in this C-Q analysis: 1) instantaneous (hourly) discharge data were used 260 

to supplement the NWIS database and 2) 30-year daily discharge records are a reference for C-Q ranges. Because Q values are 

more likely to change over daily periods at high flows than low flows, instantaneous discharge measurements are more critical 

on high flow days than low flow days.  Instantaneous discharge during the chemistry sampling can be > 50% higher or lower 

than the daily mean discharge for a range of important solutes, despite little overall bias (Figure S4).  Thus, the CAMELS-

Chem discharge data could improve accuracy in previous C-Q analysis that rely on daily measured or modeled discharge data. 265 

The 30-year daily discharge records can be used to assess the degree of discharge variation covered by chemistry sampling 

dates.  We show this as the percent of the long-term FDC covered by the minimum and maximum discharge during sampling 

in Figure 7.  While many sites cover > 90% of the FDC, like those in the upper Midwest, other locations cover less than 50% 

of the FDC, like many of the Gulf Coast sites.  The response of the concentration discharge relationship can be different at 

high and low flows (Li et al., 2020).  The diverse number of samples with uneven collection dates, as well as the lack of 270 

discharge variation during solute sampling, suggest that future work should explore C-Q uncertainty estimates using more 

sophisticated statistical techniques with CAMELS-Chem. 
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4.3 Weathering Response 

4.3.1 Background and Motivation 

Weathering (i.e. the breakdown of bedrock and regolith) involves key physical and chemical processes that shape the critical 275 

zone and provide important nutrients for all ecosystems. Weathering of silicate minerals regulates global atmospheric CO2 

levels over geologic time scales (Spence and Telmer, 2002), and weathering of carbonate rocks modulate CO2 levels at the 

human to century time scales (Martin, 2018). Riverine composition is often used as an indicator for weathering rates and to 

draw conclusions on implications at larger scales. A classic example is the study by Gaillardet et al. (1999) where 60 of the 

world largest rivers were used to show a strong role of bedrock lithology on weathering rates from Si effluxes.  To display the 280 

impact of major rock classes (i.e. silicates, carbonates, evaporites) on riverine composition, the use of molar ratios for geogenic 

species (Ca/Na, Mg/Na, HCO3/Na) instead of absolute concentrations is useful, because large differences in concentrations 

between solid and liquid phases make comparisons difficult. CAMELS-Chem provides complete and co-sampled water 

chemistry datasets, with known lithology, making these types of weathering analyses possible across CONUS. 

4.3.2 Analysis and Findings 285 

CAMELS-Chem has sufficient data on the dissolved load of geogenic species to be used in a regional scale weathering study 

across variable lithology and climate. We display these molar ratios of stream water composition for all CAMELS-Chem sites 

(with a sample number larger than 5) as a function of bedrock lithology including igneous, metamorphic and sedimentary 

rocks (Fig 5).  We included only samples in the lower tercile of daily discharge values because  the low flow discharge  is 

more likely from longer residence groundwater that carries the weathering signal.  The lower tercile encompasses more Ca 290 

and Mg samples than Na and HCO3 samples based on overall sampling frequency (Figure 9).  Similar to previous studies 

(Gaillardet et al. 1999), we observe organization as a function of lithology, with catchments underlain by carbonate plotting in 

the upper right (i.e., high Ca/Na, Mg/Na, and HCO3/Na ratios) and unconsolidated sediments plotting in the lower left (e.g., 

low Ca/Na, Mg/Na, and HCO3/Na ratios).  These results are consistent with the high weathering rates of carbonates, where 

even small amounts of carbonate lithology lead to significant shifts to higher Ca/Na (calcite endmember) and Mg/Na (presence 295 

of dolomite) ratios. Although beyond the scope of this work, CAMELS-Chem gives sufficient samples to provide uncertainty 

estimates in Figure 8, particularly given the uneven number of samples and distribution across solutes (Figure 9). CAMELS-

Chem also allows consideration of catchment properties to better understand connections to climate, hydrology, and other 

physiographic effects. For example, we visualize the baseflow index to show generally higher baseflow in carbonates-underlain 

catchments (Figure 8), which is consistent with fractures and highly conductive conduits that are common in carbonate aquifers 300 

(Hartmann et al., 2014). In contrast, unconsolidated sediments tend to have low weathering rates and low baseflow index 

(Figure 8).  The control of lithology on geogenic species concentrations needs to be taken into account when investigating 

other processes, like baseline concentrations found in the C-Q relationships (i.e. Godsey et al. 2019), particularly when using 

a single or small number of catchments to infer large-scale response. CAMELS-Chem includes these important data on 
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lithology across many catchments, which we hope motivates the low-temperature geochemistry research community to take 305 

another look at weathering processes across CONUS. 

5 Summary and Conclusions 

We developed and released the CAMELS-Chem dataset comprising > 44,000 water chemistry measurements, corresponding 

instantaneous discharge, and wet deposition data.  The dataset has several advantages because it is paired with 

hydrometeorological and hydrological modeling data (Newman et al., 2014), as well as catchment physiographic properties 310 

(Addor et al. 2017).  In addition, the consistency of USGS water chemistry analysis increases the comparability of the dataset 

across regions and decades, which is a well-recognized problem (Godsey et al., 2019; Niu et al., 2018).   

 

CAMELS-Chem has several limitations that were prominently illustrated through examples.  In general, the sampling 

frequency and chemical variables of interest are not consistent over time, reflecting changing priorities and budgets within the 315 

USGS.  This may require subsetting the data into the catchments with longer records or using new machine learning and 

statistical techniques that can take advantage of sparse data within a larger data analysis.  The CAMELS-Chem dataset shows 

that bi-weekly or coarse water sampling reflects somewhat random discharge conditions on the flow duration curve (Figure 

S4).  An advantage of CAMELS-Chem would be to use long-term discharge to constrain and propagate uncertainty in water 

chemistry-based flux and modeling efforts. 320 

 

We illustrate several basic applications of CAMELS-Chem to motivate future research efforts across a variety of fields.  One 

advantage of a comprehensive dataset such as CAMELS-Chem is to target new measurement campaigns that either extend 

long-term records, add new chemical species, or add new sites all together.  These long-term records should guide future large-

scale sampling campaigns and/or new gauges.  For example, consistent co-sampling of solutes across the streamflow regime 325 

provides more information than limited discharge conditions, which should be paired with regional or larger-scale consistency 

in the variables of interest.  Another exciting application of CAMELS-Chem is use in ‘big data’ applications of advanced 

statistical or machine learning tools that are focused on specific research questions.  For example, large data approaches can 

develop new predictive tools for ungauged locations to help with water quality management (Zhi et al., 2020) or make process 

inferences and improve predictive models (Nearing et al., 2020).  All of the research directions take advantage of the many 330 

unique aspects of CAMELS-Chem, which bodes well for its adoption and use by a variety of scientific disciplines. 

Code and Data Availability 

Data are made available on this google drive with plans to publish a more permenant place in the next round of reviews.  

https://drive.google.com/drive/folders/1AF37U3jXW8nxIe195bb2nN2HDpDsdKVr?usp=sharing  
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Figure 1: ETL process flow from source system to the data transformers and loading into target system. 
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Figure 2: The number of samples (symbol color) and length or record (symbol size) for: (a) Daily Discharge, (b) pH, 

(c) DO, (d) DOC, (e) NO3, (f) SO₄, (g) Si, (h) Ca, (i) Na.  The inset histogram shows the number of samples by roughly 

7-year periods. 505 
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Figure 3: The mean concentration (symbol size) and coefficient of variation (symbol color) for  (a) Daily Discharge, (b) pH, (c) DO, 

(d) DOC, (e) NO3, (f) SO₄, (g) Si, (h) Ca, and (i) Na. 

 510 
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Figure 4: Average atmospheric wet deposition for (a) NO3, (b) Cl using data from the NADP network from 1981-2014. 515 

 

 

Figure 5: Long-term Sen slope (e.g. average trend) from Mann Kendall analysis of SO4 deposition (a) from 1985-1992, (b) 1992-

2002, and (c) 2002-2010.  Symbol color shows dominant geology.  The maps show the corresponding number of streams SO4 samples 

for (d) higher flows (FDC <33%), (e), lower flows (FDC >66%), and (f) middle streamflow values (FDC 33%-66%). 520 
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Figure 6: Power law slope of the event-scale concentration discharge relationships averaged across catchments based on aridity for 

common solutes.  

 525 

 

Figure 7: The fraction of the flow duration curve the water chemistry data spanned by the observed data (color, 1=observed high 

and low daily flow)  and length of record (symbol size) for (a) DOC, (b) HCO3, (c) SO4, (d) Si, (e) Ca, and (f) Na. 

 

 530 

https://doi.org/10.5194/hess-2022-81
Preprint. Discussion started: 8 March 2022
c© Author(s) 2022. CC BY 4.0 License.



23 

 

 

Figure 8: Molar ratios of HCO3 and Mg to Na as a function of the molar ratio of Mg/Na using the FDC>66% (low flows).  Symbol 

color is the dominant geology and symbol size is the baseflow index. 

 

Figure 9: The number of samples in the lower tercile of discharge values (symbol size) and their length of record (symbol color) for 535 
(a) Na, (b) Ca, (c) Mg and, (d) HCO3. 
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